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The structure of normal shock waves is considered when the ratio of molecular masses 
m,/m of a binary mixture of inert monatomic gases is large and the density ratio 
pp/p is of order unity or below. Generalized hydrodynamic equations, valid for 
arbitrary intermolecular potentials, are obtained from a hypersonic closure of the 
kinetic equation for the heavy gas and a near-equilibrium closure for the light 
component. Because the Prandtl number of the light gas and the Schmidt number 
of the mixture are nearly constant, the only independent transport coefficient arising 
in the model is the viscosity p of the light gas, which is absorbed into a new 
independent position variable s. Knowledge of p as a function of temperature thus 
determines the shock structure independently from the details of the intermolecular 
potential, allowing comparison with experiments in the complete absence of free 
parameters. In terms of the ratio M (frozen Mach number) between the speed of 
propagation and the sound speed of the light gas in the unperturbed medium, one 
finds that: (i) When M > 1, the behaviour is similar to that of a ‘dusty gas’, with 
a broad relaxation layer (outer solution) following a sharp boundary layer through 
which the speed of the heavy gas is almost constant (a shock within a shock). (ii) When 
(1 +pp/p)-t < M < 1, the boundary layer disappears, yielding a so-called ‘fully 
dispersed wave’. (iii) Because the internal energy of the heavy gas is negligible, the 
present problem differs from previous shock studies in that, for the first time, the 
structure of the relaxation region is obtained algebraically in phase space, thus 
permitting an exhaustive study of the behaviour. From it, the overshooting solution 
found by Sherman (1960) is related to the unphysical degenerate branch of the outer 
solution arising when M > 1, showing a failure of the Chapman-Enskog theory, even 
for weak shocks, when the heavy gas is dilute. Also, an algebraic explanation arises 
for the ‘double hump structure’ observed in He-Xe shocks. (iv) When M is nearly 
unity, the initial boundary layer spreads out, and the structure must be obtained by 
integration of a numerically unstable system of three differential equations. However, 
the reduction of order brought about by the weak variation of the light-gas entropy 
at the head of the shock, results in a stable system of equations that we integrate 
numerically. Excellent phase-space agreement with recent shock-tube experiments 
of Tarczynski, Herczynski & Walenta (1986) is found for both weak and strong 
shocks. 

1. Introduction 
The structure of normal shock waves in binary gas mixtures has been studied since 

the work of Cowling (1942), who considered the inter-diffusion of both species as 
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the only dissipative mechanism present. The inclusion of viscosity and thermal 
conductivity within the framework of the Chapman-Enskog (GE)  theory was done 
by Dyakov (1954) and Sherman (1960). Sherman predicted an overshoot of the 
heavy-species velocity in the limit of large mass ratio and small molar fraction of the 
heavy component. This overshoot was not observed in experiments with Ar-He 
mixtures made by Center (1967) nor in numerical simulations using the Monte Carlo 
Method (Bird 1968,1984). Goldman & Sirovich (1969) used an approach more general 
than the C-E theory (Goldman & Sirovich 1967), allowing for temperature and 
velocity differences between the two species. Although their system of four 
governing differential equations was numerically unstable (Sirovich & Goldman 
1969), Goldman & Sirovich (1969) studied in detail the limit of weak shocks without 
ever encountering any velocity overshoot. Harris & Bienkowski (1971), using the 
moment method of kinetic theory for Maxwellian molecules, developed the most 
complete available hydrodynamic theory, valid also for strong shock waves. They 
analysed the resulting equations for a broad range of asymptotic limits of the 
molecular mass ratio m/mp (subscript p corresponds to the heavy species) and the 
density ratio upstream of the shock, B = (pp/p)-,. Relatively recent experiments by 
Gmurczyk, Tarczyliski & Walenta (1979) and Tarczynski et al. (1986) with He-Xe 
mixtures have renewed the interest in the problem owing, partly, to the double-hump 
structure observed on the light-gas density, characterized by the presence of an 
intermediate inflexion point. Platkowski (1979) studied the problem through the 
WKG method but did not find the above structure, which has been obtained by 
Bratos & Herczynski (1980, 1983) by a combination of a variational approach to the 
Boltzmann equation and a Monte Carlo calculation of some of the terms occurring 
in their formulation. 

In the present work we consider binary mixtures of inert monatomic gases in 
the interesting limit m/mp < 1 and E < 0(1 )  in which the most peculiar structures 
have been observed and predicted. Although Harris & Bienkowski (1971) have 
previously made considerable progress, our analysis of this limit is more exhaustive, 
is based on fully specified governing equations not restricted to Maxwell molecules 
and will be enriched by the newly available experiments in He-Xe mixtures. We are 
also guided by the heavy-molecule-aerosol analogy, first suggested by Reis & Fenn 
(1963) and successfully exploited in a variety of situations involving gas mixtures 
with disparate masses (see, e.g. Maise & Fenn 1972; Thuan & Andres 1979; Schwartz 
& Andres 1977 ; Ferntindez de la Mora 1984 ; Fernandez de la Mora, Wilson & Halpern 
1984). 

We use a hypersonic closure for the conservation equations of the heavy species. 
This approach is justified when mp is sufficiently large that the thermal speed of the 
heavy gas is small compared to the mean mixture speed even downstream of the shock 
(where, obviously, the mixture is subsonic). The relatively simple resulting equations 
are solved asymptotically by an expansion in the mass ratio, and the solution has 
the following features: when the incident frozen Mach number (M) based on the pure 
light-gas sound speed is less than one but larger than (1 + E ) - ;  we find an algebraic 
solution in phase space valid, in first approximation in the mass ratio, over all the 
shock wave, and reducing the solution in physical space to a quadrature. When M 
is larger than one, this algebraic solution is not uniformly valid through all the shock 
and there is a thin boundary layer (inner region) across which, in first approximation, 
the velocity of the heavy species remains constant and the light gas is compressed 
as in a normal shock wave of a pure gas. This situation does not remain valid as M 
approaches unity because the inner region becomes much thicker. However, in this 
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case, an additional simplification arises from the fact that the light-gas entropy in 
the inner region is approximately conserved. 

Similar results have been found for shock waves in dusty gases. Carrier (1958) 
considered two regions: a gas shock assumed as a discontinuity (he neglected the 
viscosity and thermal conductivity of the gas), and a relaxation zone whose structure 
is obtained by solving a first-order differential equation in phase space and performing 
a quadrature in real space. Studies of the relaxation zone were also made by other 
authors (see Marble 1970, and references therein), in addition to other works including 
the effect of the volume fraction of particles (see, e.g. Srivastava & Sharma 1982). 
Hamad 6 Frohn (1980) included in their analysis the viscosity and thermal 
conductivity of the gas and the particle volume fraction, obtaining a power expansion 
solution in phase space for weak shocks (fully dispersed shocks). 

The light-gas discontinuity upstream of a broader relaxation region obtained in 
these ‘dusty gas’ studies is closely related to some of the structures observed 
experimentally by Gmurczyk et al. (1979) and Tarczynski et al. (1986) in He-Xe 
mixtures. Moreover, the qualitative structure of the shock for the dusty gas given 
by Hamad & Frohn (1980) is similar to our results and those of Harris & Bienkowski 
(1971): there is a ‘fully dispersed wave’ when Pmin < W < 1 (Wmin = (1 + € ) - I  in 
the heavy-molecule case) and an inner region when M > 1, which can be considered 
as a discontinuity with respect to the relaxation zone when IM- 11 is not very small. 
The present problem is simpler than its dusty-gas analogue because of the negligible 
role played by the heavy-species internal energy ($2). This feature eliminates the 
temperature of the heavy gas from the picture, turning the dusty-gas relaxation 
differential equations into purely algebraic relations ($ 3.1). Appropriate exploitation 
of this simplifying feature provides a very complete description of the possible 
regimes, including an algebraic explanation of the double-hump structures observed 
($3.1) and of Sherman’s overshooting paradox ($3.2). Another novelty of the present 
analysis is in the treatment of the region where M x 1 ($3.3). Our phase-space results 
are universal in the sense that they do not depend on the form of the interaction 
potential; only on the mass ratio parameter F (equation (13)), the density ratio E and 
the Mach number M. They yield excellent agreement with the experiments of 
Tarczynski et al. (1986) for He-Xe mixtures ( $ 5 ) .  Knowledge of just the temperature 
dependence of the viscosity coefficient of the pure light gas allows a fitting- 
parameter-free conversion of phase-space results into real-space structures which 
have been shown by Riesco-Chueca et al. (1986) to agree rather well with earlier 
experiments of Gmurczyk et al. (1979). Finally, we wish to remark that the present 
hypersonic results may be extended to higher orders in the mass ratio mlm,. 

2. Governing equations 

mass, momentum and energy of the mixture can be written as 
The integrated one-dimensional and steady conservation equations for species 

pu = m, ( 1 )  

pu2 + pp u; + P,, + P,,, = P,  (3) 
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where p and pp are the densities (subscript p stands for the heavy species); u and 
up the mean velocities; e and e p  the internal energies; P,, and P,,, the xx-component 
of the pressure tensors; Q, and Q?, the x-components of the heat fluxes; riz, P and 
E are integration constants and B is the density ratio upstream of the shock. 

In first approximation in the mass ratio mlrn,, we can write? (Fernindez de la Mora 
& Fernandez-Feria 1987) 

dT 
Q = - A -  

dz ’ 

1 k  
y - l m  T ,  e = -- 

where T is the light-gas temperature and p, h and y (f) are the viscosity, thermal 
conductivity and specific heat ratio of the light gas. Since the density ratio pp/p  is 
of order unity, then provided Tp/T remains of order unity inside the shock, Pp,,/P,,, 
Qp,/Q, and e p / e  are quantities of the order of the mass ratio m/mp (or less) and can 
be neglected, in first approximation, in (1)-(4). This feature, together with the 
hypersonic closure (see below), leads to the absence of the heavy-gas temperature 
from the first-order equations. 

The momentum conservation equation for the heavy species can be written as 

where b, is the x-component of the momentum transfer between both species. As 
mentioned above, the heavy particles remain in hypersonic conditions across the 
shock and their pressure tensor is negligible compared to ppu; (hypersonic closure). 
Moreover, we are going to assume that the slip velocity up -u is small compared to 
the light-gas thermal speed (BkTlm)? and the momentum transfer term b, can be 
approximated by a linear function of up-u (see e.g. Burgers 1969): 

u -u 
7 

b x = - ,  ( 7 )  

where 7 is the momentum relaxation time which can be related to the mixture 
diffusion coefficient D by the Einstein law D = kTr/mp. Thus, (6) can be written as 

The system of (1)-(5) and (8) is closed in the variables p, pp, u, up and T. Note that 
this is so even if the assumption of small slip velocity ( 7 )  is replaced by a more general 
expression for b, (Riesco-Chueca et al. 1986, 1987). The boundary conditions are 

~ = p - ~ ,  p p = ~ p p - m ,  u=uP=u-,, T = T - ,  asx+-m, (9a)  

t Actually, the collisions of the light gas with the heavy particles must modify this ‘pure light 
gas’ behaviour. But the corrections are of the order of the ratio of number densities, that is, of 
order m l m , ,  which may be neglected in first approximation. Furthermore, the near-equilibrium 
closure (for the light gas) implied by (5) requires that the shock-wave width be large compared to 
the light-gas mean-free-path. This seems to restrict the validity of the present theory to the case 
of weak shocks, but this is not really the case, as discussed in 54. 
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far upstream, while the downstream equilibrium conditions are given by the 
Rankint+Hugoniot relations together with the no-slip condition u = up,  

(9b) p = pm, pp = ~ p , ,  u = up = u,, T = T, as x++oo .  

Using (9a) to evaluate the integration constants P and E, and in terms of the 
dimensionless variables 

(1)-(5) and (8) become 

_ -  
ds 

do 
- - (7- 1)2+€(5-27 + 1) (6- 1) _ -  3 

2Pr(y- 1)M" ds 
9 

where the frozen Mach number and the Prandtl number are 

W b )  A y - l m '  

The Mach number (12a) is the light-gas Mach number or frozen Mach number in the 
upstream conditions. The mixture Mach number or equilibrium Mach number Me can 
be related to M by We = W( 1 + E ) / (  1 + ms/m,), or in first approximation in m/mp, 
by We = M"( 1 + 8 ) .  The dimensionless parameter F appearing in (1 1 c )  is the large 
quantity 

pr = P Y k  

m b P  
m Sc 

F = &A-, 

where Sc is the Schmidt number Sc = p/pD. Since Pr and Sc vary very weakly with 
temperature (Srivastava & Rosner 1979)) both have been treated as constants given 
by their upstream values. Note that when E = 0, (1 1 a) and (1 1 b) are not coupled to 
(1 1 c )  and correspond to the equations for a (weak) shock wave of the light gas as 
a pure gas (Milltin 1975). Equation ( l l c ) ,  though coupled to the hydrodynamical 
equations (1 1 a) and (1 1 b), is a deterministic equation analogous to the one governing 
the evolution of the particles in a 'dusty-gas' (Marble 1970). 

A feature worth noticing in the governing equations (1 1) is their universality, or 
independence from the particular details of the intermolecular interaction. The 
solution in s-space feels the microscopic features of the system only through the group 
Sc absorbed into the mass ratio parameter F (Pr = for a monatomic gas). The real 
(+space shock structure does depend on the interaction potential of the pure light 
gas, but only through its viscosity coefficient p (equation (10d)).  
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3. Solution 
Eliminating ds, (11) can be written in phase space (7, 5, 0 )  as 

The particular solution in which we are interested starts a t  the singular (fixed) point 

'I 1 1  =[ = 0  1 1 ,  = (154 

and finishes at the second singular (fixed) point at which the right-hand sides of (14) 
vanish and = 5 (equilibrium conditions) 

E )  M2(y  - 1 ) + 2 'I2 = 5, = ( l+  
(1+E)(y+l)M2 ' 

2(y-  1, 
( y  + 1 )2 (1 + E )  M2 

[M2(1+€) - 13 [yJp(l+€) + 13. e 2 = i +  

The separation between these two fixed points gives the jump across the shock 
(Rankinc+Hugoniot relations). 

3.1. Outer solution 
The parameter F appearing in (13) is a measure of the two widely different 
microscopic scales of relaxation occurring in the problem. Its large value permits an 
asymptotic analysis of (14). In  first approximation the left-hand sides can be 
neglected yielding two algebraic expressions from which 0 and 9 can be written in 
terms of 5 as the two hyperbolae: 

Since the higher-order derivatives have been neglected in the differential equations, 
the above may be called the 'outer' solution, and it may have to be complemented 
with a boundary layer in the upstream region. 

The fact that the (phase-space) structure of these shock waves may be given 
analytically is a remarkable feature of the present problem which has no precedent 
in the field?. As a rule, the shock structure is determined by numerical integration 
of a relaxation equation. The reduction of our system to an algebraic one is due to 

t Although (51 a, 6) of Harris & Bienkowski (1971) are equivalent to (16a, 6) above, these authors 
do not unfold the physical implications that follow from them. 
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0.5 0.75 1 
E 

FIGURE 1.  Phase-space outer solution [equations (16)l for a He-Xe mixture with E = 0.5 and 
different values of the upstream frozen Mach number Y. 

the absence of the heavy-species temperature from the picture. We may thus explore 
trivially the effect of the various parameters of the problem, M, B ,  etc. 

The outer solution given by (16) is represented in figure 1 for different Mach 
numbers. Notice that when the frozen Mach number is less than one and the 
equilibrium Mach number is larger than one (that is, in the range [l + s ] - t  < M < l), 
this outer solution is uniformly valid through all the shock (fully dispersed wave). 
When M = 1, the hyperbolae have an infinite slope at 5 = 1, and when M > 1 the 
initial slopes are negative. For M in the range 1 < M < M,, where Me is given by 

-= 1 -** - E ( Y  + 1) 
M”* y€+[y26(1+€)-€]4’ 

the solution (16) satisfies both boundary conditions, but at the expense of a physically 
impossible overshoot (analogous to Sherman’s) into the region > 1. Therefore, when 

2 F L I  179 
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M > 1, the outer solution is only valid for 6 < 1 and a discontinuity appears at 5 = 1.  
Actually, this discontinuity corresponds to the light-gas shock wave as a pure gas 
since the intersections of (16) with 6 = 1 are 

2(y- l )  (W-1) ( y W +  l),  
(Y + 1 l2 W 

el= I +  

which give the Rankine-Hugoniot relations for a pure gas. For M = M,, the 
hyperbolae (equation ( 16)) became degenerate and the outer solutions are straight 
lines : 

W ( y - 1 ) + 2  E ’= ( y + l ) M 2  + ( l + ~ ) W - l  (5- 11, 

When M 2 M, the outer solution is also valid only for 6 < 1, but no longer passes 
through the downstream equilibrium point. It would thus fail in giving the shock 
structure, even if one were willing to accept the overshooting solutions as physically 
meaningful ! 

Another interesting feature of the outer solution is that the light-gas velocity 7 is 
not a monotonic function of 6, but displays a maximum when W > ( 2 y / [ y -  11). The 
slow variation of 71 characterizing the beginning of the relaxation zone in a broad 
region of Mach numbers starting somewhere below M = (2y/[y- l])i = 54, leads to 
a double-hump structure in the light-gas density, in agreement with earlier experi- 
mental observations by Gmurczyk et al. (1979). The first hump corresponds to the 
light-gas shock wave, and the second one is contained within the outer solution for 
Mach numbers M larger than a certain value. This phenomenon is illustrated in figure 
2, where 7-l (which from (1)  is proportional top) given by the outer solution is plotted 
versus s (making use of ( l l c ) ) .  The necessary condition for the double hump is the 
existence of an intermediate inflexion point in the relaxation portion of the curve 
v-l(z). This condition would yield the Mach number above which such a double-hump 
structure exists which, in general, is a function of E and the gas properties. A very 
rough estimate is given by the condition that dq-’/ds = 0 at E =  1, that is, 
W = 2y/[y- I] (corresponding to 54 in figure 2). The actual value is always below 
this. 

From the above considerations we conclude that, when the frozen Mach number 
is larger than one, there is a boundary layer of thickness of order F-I in the 
neighbourhood of 5 = 1 in which right- and left-hand sides of (14) are of the same 
order and the outer solution is not valid. In first approximation the solution is 
described in terms of two different regions : a very thin one where the light gas behaves 
as in a shock wave of a pure gas with the heavy gas ‘frozen’ (5 x constant = l), 
and a zone of relaxation towards the equilibrium state (15b) ,  where the outer solution 
is valid in first approximation. 

3.2. Analysis of the singular points, stability and Sherman’s overshoot 
The structure of the boundary layer (shock within a shock) must be obtained by 
numerical integration of the equations. In order to start the integration, it is essential 
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FIQURE 2. Space outer solution for 1-l (proportional to the light-gas density). He-Xe, E = 0.5 
and M = 1.5, 1.8, 2, 2.236, 2.5. 

to study the structure of the singular points. Such an analysis will reveal the 
numerical instability of the system and will complete our explanation of Sherman's 
paradox. It is also the basis for 53.3. 

It must be noticed that, though we have non-dimensionalized the equations with 
respect to the upstream conditions, the following analysis for the singular point 
8 = 6 = 7 = 1 is also valid for the downstream singular point because the equations 
would remain identical if the non-dimensionalization of (10) had been made in terms 
of the downstream conditions; but in this case, obviously, M < (l+s)-: would 
be the downstream Mach number. Linearizing (11) around the singular point 
8 = 6 = 7 = 1, the characteristic equation for the eigenvalues h may be written as 

where t~ = $Pr/y.  This equation gives three eigenvalues and, thus, three possible 
starting directions of the solution. It can be seen that when ( P - l ) / M Z  9 F-4 
(upstream point), two of the eigenvalues are given, in first approximation in F-l, by 
equating to zero the determinant of the first term of (17a) ,  coinciding with the 
eigenvalues for the shock wave of the light gas as a pure gas (Milltin 1975) : 

1 
h,+A, = cr+l--+O(F-'). 

YM2 
2-2 
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FIGURE 3. Eigenvalues (roots of (17a)) v8. M for a He-Xe mixture with E = 0.5. The broken 
curves correspond to the pure light gas (He). 

The third eigenvalue is a property of the mixture and not of the light gas. It is of 
order F-’ and, in first approximation, is given by 

A, = -+(l+&)+O(F-2) .  

The eigenvalues A, and A, yield starting slopes of order F (boundary-layer thickness 
of order F-’ ) : 

= [ l + y W ( A , - l ) ] ( l + A , F ) - e y P  ( i =  1,2). 
d t  f = 1  

Since A, is negative, the solution cannot start with this eigenvahe. The initial slopes 
associated with A, are 

As pointed out before, the above expressions are also valid for the eigenvalues at 
the downstream singular point, provided 1W- 1)/W 9 3’3. For lW - 11 = O ( F k )  or 
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smaller (17a) can, in first approximation, be written as A 3 + ( y - l - a - - j j A 2  = 0, 
yielding an eigenvalue of order unity, 

1 

Y 
A, = fT+l--, 

and the other two of order F-i, given in first approximation by the roots of the 
equation A , ~ A a + [ h , ~ - - ( l M Z - l ) l i l h - s -  = 0. In particular, for IM2-11 = O ( F 1 ) ,  
one obtains 

The eigenvalues calculated by solving exactly (17 a) for a particular case are plotted 
in figure 3 as a function of the Mach number. For M > (1 + E )  -4 this figure depicts 
the behaviour at the upstream singular point, and for M < (1 +s)- i  it  corresponds 
to downstream conditions. Note that for M < (1 + s)-4 the expression for A,, the 
eigenvalue that changes its sign at the sonic point M = (1 + E ) - + ,  is interchanged with 
the expression for A, in (17). It has already been seen that the solution cannot start 
with the negative eigenvalue A,. Also, as in the pure-gas case, it cannot start with 
the largest eigenvalue A,, which corresponds to a non-physical behaviour incom- 
patible with (5a, b) for the light gas. Therefore, the correct starting (and arriving) 
eigenvalue is A,, that changes its sign at the sonic point. A t  the arrival, A, is given 
by the expression (17d) and corresponds, obviously, to the outer solution. 

The eigenvalues corresponding to the pure light gas are also plotted in figure 3. 
It is observed that, except for a narrow region around M = 1, the physically relevant 
eigenvalue of the light gas almost coincides with A, for M < 1, and with A, for M > 1. 
Near M = 1 there is a ‘bifurcation’ in which the modes A, and A, of the mixture 
interchange their characters, A, being the near null eigenvalue for M <  1 and A, 
taking its role for M > 1. 

The fact that the eigenvalue A, is neither the largest nor the smallest one, makes 
the numerical integration unstable. However, from the above analysis, when 
(W- 1)/W 9 F 3 ,  the boundary-layer thickness is of order F-l,  and, thus, the outer 
solution for the relaxation zone matched to a boundary layer at = 1 (a shock wave 
for the pure light gas) is a solution with errors of order m/m, all through the shock. 
This approximation becomes poorer as M approaches unity, and we study the limit 
in the next section. 

3.2.1. Sherman’s overshoot 
In  the Chapman-Enskog theory for binary mixtures used by Sherman (1960) there 

are also three eigenvalues. For the present limit m/m,+O, E = O ( l ) ,  two of them are 
of order unity for all Mach numbers and the only physically relevant one is of order 
m/m,. Remarkably enough, the starting slopes of Sherman’s overshooting solution 
corresponding to this last eigenvalue (which is zero in first approximation, like 
our A,) are equal, in first approximation, to the starting slopes of the outer solution 
(16) given by (18c, d ) .  These are also the arriving slopes of Sherman’s solution at the 
downstream singular point when M is the downstream Mach number, indicating that 
the physically relevant eigenvalue in the G E  theory corresponds to our A, for M > 1 
(though obviously with positive sign) and to A, for M < 1. Therefore, for We > 1 + E 

(M > 1) the G E  theory fails to give the correct starting eigenvalue, and produces 
overshooting solutions. Consequently, even for weak shocks, the G E  theory fails 
when the heavy component is dilute. It must be noticed that the above identification 
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of our outer solution and that of Sherman is restricted to the neighbourhood of the 
singular points, where both approaches agree in depending on some sort of proximity 
to equilibrium. In fact, out of these regions, both solutions are not the same for the 
case studied by Sherman. 

Apparently, for M > 1, the mode absent from the G E  theory and associated to 
our eigenvalue A, must be connected with our use of two independent momentum 
conservation equations, rather than only one complemented by a constitutive 
diffusion law. This is probably the reason why the similar approach of Goldman & 
Sirovich (1967, 1969) was also free from overshoots. But we cannot be conclusive, 
as their analysis was restricted to weak shocks, while we have shown that overshoots 
arise for shocks with We > 1 + E. The role played by the two temperatures in this limit 
is negligible for the approach of Goldman & Sirovich (and for our own), because the 
temperature of the heavy gas is uncoupled from the problem to first order in m/mp. 

3.3. Solution when JM2- 11 < 1 
As IM2-11 becomes small, the thickness of the boundary layer increases and the 
approximation of the previous section is no longer valid. That this is so is readily 
seen from the slopes dr]/dE and d0/dt; at E = 1, which are not O(F). In fact, for 
lW-lI = O ( f i )  or smaller, A, = O(F-4) and, from (18) 

and similarly for dB/dE at 5 = 1. In particular, for (W- 11 = O(F-') ,  one obtains in 
first approximation 

and 

For JW- 11 < 1 but IW- 11 % F-4, equations (17) are valid and the slopes are 

In the limit IW- 11 = O(F-i ) ,  i t  can be shown that r ] -  1 = O(F-i ) ,  0 -  1 = O ( f i )  
and 5- 1 = O(F-l )  in the boundary layer which, therefore, has a thickness of order 
F - I .  Introducing the variables r]* = (r-  1)  F!, [* = (E-  1)  F ,  0* = (0- 1) l& and 

O(IM2- 1IF). 

p =  (y-i)(r]-i)+e-i ,  (22) 
(14a)  may be written as 

Therefore, at the lowest order we have p = 0, or 

0 - 1  = - (y- l ) (r - l ) ,  (24) 

which states that the light-gas entropy is in first approximation conserved inside the 
boundary layer.? 

t In an earlier version of this paper, the near constancy of f i  was used as the basis of a stable 
numerical scheme (see below) without further analysis. Subsequent details of the boundary-layer 
structure are due to an anonymous referee, including the scaling for y*,  <* and O*,  and down to 
(26). 
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Similarly, (14b) becomes 

y-1 dq* 
(1 + -) 'I* d5* = +( y + 1 ) ' I*2 + e[* + 'I* (W - 1) Fi. 

UY 

Notice that in writing these equations, terms of order F 3  have been neglected. 

of this equation that satisfies r]* = 0 at E* = 0 may be written as 
In the limiting case (W- 11 = O(F-'), the last term in (25) is small and the solution 

with c = 1 + (y-  l)/vy. It is easily verified that this solution ((26) in addition to 
8* = - (y-  I )  'I*) correctly yields the slopes (20) at E* = 0, and that, in the limit 
[* +- 00, it behaves as the leading term of the outer solution (16) for E+ 1 in this 
limit 1M2-11 = O(F-'). It has the limitation of holding only for extremely weak 
light-gas shocks (in He-Xe mixtures, M 2 -  1 is equal to F-' for M = 1.016). In  the 
more general case IW- 11 = O ( F i )  one has to solve (25) numerically, being forced 
to carry the expansion to second order as fi is not large enough for He-Xe mixtures. 
Therefore, we choose the alternative procedure of exploiting further the near 
constancy of /3 to generate a much more rapidly convergent stable numerical scheme. 
Combining (14a) and (14b) to form an equation for d/3/dE and retaining only the 
leading terms in the boundary layer leads to 

F 3  'I * da* = (7 + w) /3* + (y - 1 ) [eE* + Fi ( W - 1 ) 'I * + 7 *2 ( 1 - i ~ y ) ] ,  
dE* 

with /3* = /3F = O(1). Therefore, because /3* = f i [ 8 * +  (y-l)q*] the algebraic 
equation 8* = 8*('1*, [*) which results from equating to zero the right-hand side of 
(27), has errors of order F-' in the boundary layer, rather than O ( M )  as in the 
equation 8* = - (y-  1) 'I*. This result can be generalized through the entire shock 
wave, since in the outer region, the algebraic equation resulting from making 
d/3/d& = 0 by combining (14a, b), is a linear combination of (16) and, thus, has errors 
O ( F - l ) .  

Hence, the expression 

I (y-  1) [ ('I - 1) + € ( E -  1) +-(-- I)] + W y -  1 )W - ('I - 1 l2 1 8  

YW 'I 

is, with errors O(F-'), an integral of the equations in the limit M 2 -  1 4 1 which, in 
addition to either ( 1 4 4  or (14b) (in subsequent calculations we shall use (l4a)) gives 
the solution in phase space. The order of the system is reduced from third to second, 
eliminating the eigenvalue A, which made the numerical integration unstable. With 
respect to the boundary-layer equation (25), this procedure has the advantage that 
with the same amount of numerical work (the integration of an ordinary first-order 
differential equation) one obtains the solution through the whole shock (rather than 
only in the boundary layer) with errors O(F-')  (rather than O(F-i ) ) ,  and without a 
need for matching the inner and outer solutions (except in the very narrow limit 
W -  1 = O(F-') governed by the analytical solution (26) in the boundary layer, with 
errors of order F-4). 
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FIQURE 4. /?'-function [equation (22a)l for some values of M(He-Xe, e = 0.5). Numerical values 
used are m,/m = 32.75; PT = 0.67; Sc = 2.30. 

An improved definition of the quantity B, such that dP/dE = 0 at 6 = 1, may be 
given as 

f = A ( q - 1 ) + 8 - 1 ,  (22' 1 

where A is the exact slope [ - d8/dqlT, corresponding to the eigenvalue Az : 

A = ~ M 2 ( 1 - h 2 ) - l + + ~ ~ - l + O ( F - ' ) + 0  v M 2  
1+A2F 

With this new definition of r ,  the corresponding 'integral of the motion' would be 
obtained by replacing the leading ( y - 1 )  term by A in (28). As an indication of 
self-consistency of this approximate method of solution, figure 4 shows the variable 
f so calculated as a function of 6. It is observed that 8' is of the same order as 5 
all through the shock, even for values of IM2-1I/Mz that are not so small. The 
shock-wave structures obtained by this method are shown in figure 5 in phase space, 
for a He-Xe mixture with e = 0.5, and for M = 0.95 and M = 1.15; we also include 
a comparison with the corresponding outer solution. (For M < 1 both curves are 
practically the same.) 
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FIGURE 5. Numerical results for the structure of the shock compared to the outer solution for 
M =  0.95 and Y = 1.15 (He-Xe, 6 = 0.5). The dotted line in figure 4(a) corresponds to a 
higher-order outer solution ($3.4). 

3.4. Higher-order approximations for the outer solution 

It is relatively simple to obtain successive corrections for the outer solution. To this 
end, we solve (14) for 7 and 8, obtaining 

2 7 = l+-{(~-ys(E-l)+Al)-[(~-ye(~-l)+Al) 1 

Y + l  

where 

and 

In  first approximation we make A ,  = A, = 0 to obtain (16a)  and (16b) (qo = q,(E), 
do = S0(6)) .  Using these expressions to evaluate A, and A, for each 5 and introducing 
them into (29), the second-order approximation ql = ql(E) and O1 = 8,(E) is obtained, 
and so on. Carrying out these corrections, one finds that they become smaller and 
the convergence is faster as M increases (for a He-Xe mixture with E = 0.5, the 
larger corrections are about 2 %  of the first-order approximation for M = 2, and 
the first correction contains 99.99% of the total correction). When M is very near 
unity (where the first-order outer solution is a poor approximation to the solution) 
the corrections are important, and the outer solution does converge to a curve 
practically indistinguishable from the integrated solution obtained by the method of 
53.3, as shown in figure 5 for the velocity profile in the case of M = 1.15. However, 
the procedure becomes unstable for M near unity in the neighbourhood of 6 = 1 
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and we have not succeeded in obtaining the complete shock structure from this 
iterative approach. 

Finally, it is worth pointing out that a similar procedure can be used to obtain 
higher-order approximations to the solution given in 53.3 for M near unity : from the 
first approximation we can calculate (numerically) d/3/dt using (14) for each 6 and 
use it to improve the algebraic relation (28) ; with the new solution, d/3/d< can be 
calculated again, and so on. The difference is that the above procedure can be carried 
out algebraically while this must be made numerically. 

3.5. Structure of the boundary layer when W -  1 = 0(1) or larger 
To obtain the boundary-layer structure (light-gas shock wave as a pure gas), one puts 
6 = 1 in (14) and the resulting first-order differential equation dV/dO = G(O,V) is 
solved with the boundary conditions (15a)  (upstream) and (15c, d) (downstream). As 
is well known (i.e. Milltin 1975), to avoid the numerical instabilities at the upstream 
singular point (15a) (a node), one must start the integration from the downstream 
saddle point. Yet, the results of this analysis must be interpreted carefully because 
the equilibrium closure used for the light gas fails within the internal shock wave 
except for weak shocks. Keeping such a limitation in mind, Riesco-Chueca et al. 
(1986) have considered the structure of this boundary layer to the next order, 
discovering a singularity at the point O 1 , V 1  (downstream conditions of the pure 
light-gas shock). There, an interesting new intermediate boundary layer arises that 
admits a linear treatment and may thus be described analytically. The corresponding 
exponential solutions decay downstream towards the outer solution and grow 
unstably in the upstream direction to merge with the sharp pure light gas shock. The 
analysis is not completely devoid of physical interest because the near equilibrium 
closure for the light gas is still valid in the vicinity of the point el, vl. 

4. Limitations of the present model 
In  deriving the shock equations in $2 the following hypotheses were used: (i) the 

heavy-gas partial pressure, internal energy and heat flux are neglected in the mixture 
equations (3) and (4); (ii) the heavy gas is assumed to be in hypersonic conditions 
in its momentum conservation equation; (iii) a linear dependence of the momentum 
transfer on the slip velocity has been used (equation (7)),  and finally (iv) a 
hydrodynamical closure is used for the light gas (equation ( 5 ) ) .  The first of these 
hypotheses (i), is a direct consequence of the small molar fraction of the heavy species 
[of order m/mps = O(m/mp)]  and is the only one that affects the phase-space outer 
solution developed in $3.1. Moreover, except near < = 1, this outer solution in phase 
space is valid for strong shock waves, despite the fact that hydrodynamical equations 
for the light gas have been used, and despite the linear drag relaxation law (7) (which 
is less accurate as the shock becomes stronger), because neither ( 5 )  for the flux laws 
nor (7) for the relaxation law were needed. These relations were used, however, for 
deriving the phase-space solution in $3.3 for shocks with M close to unity, in which 
case both are rather good assumptions. In this phase-space solution for Mach numbers 
near unity, the (more restrictive) hypersonic hypothesis is also used and it is 
convenient to give a quantitative criterion for its validity : the heavy-species velocity 
must be much larger than its sound speed downstream of the shock, 
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FIUTJRE 6. Outer solution for the velocity (-) compared with results by Harris & Bienkowski 

(1970) ( - - - - - )  (He-Xe mixture, E = 1 ,  M = 2.12). 

or in terms of the dimensionless variables, 

where the left-hand side of the inequality is the downstream light-gas Mach number, 
which must be very large compared to the mass ratio for the hypersonic hypothesis 
to be reasonable. Using (15b), we can write the above inequality in the form 
G(M,  E )  % m/mp,  where the function G(M,  E) is plotted in figure 7. As seen in this 
figure, the restriction becomes more stringent for strong shocks (as Mgoes to infinity, 
G goes to (y  - 1)/2y( 1 + E ) )  and for increasing values of the density ratio E. In  this 
condition (30) it is implicit that the highest heavy-gas temperature is reached in the 
downstream region. However, it has been shown (Harris & Bienkowski 1971 ; Bird 
1984) that the parallel temperature (zx-component of the temperature tensor) of the 
heavy gas has an overshoot over the downstream value, and thus it is this maximum 
in the temperature which must be considered. Hence, a complete self-consistency 
check would require following the heavy-gas temperature equations along the shock, 
which can be done by means of the hypersonic closure (see Harris & Bienkowski 1971 ; 
Fernandez de la Mora 1985). As shown by Bird (1984) and Riesco-Chueca et al. 
(1986), the overshoot grows, with the Mach number reaching an asymptotic value 
which depends on E and mp/m. Typically, for H e X e  mixtures and E = 1, this 
asymptotic value is T,,/C - 1.5. Therefore, condition (30) is only slightly modified. 

With respect to the linear expression for the momentum transfer between species, 
it is clear that, for strong shocks, a more realistic law must be used because the slip 
velocity is no longer small (Riesco-Chueca et al. 1986, 1987). As discussed earlier in 
this section, this hypothesis does not affect the outer solution in phase space and this 
is the reason why our first-order results in phase space are practically the same as the 
zero-order solution of Harris & Bienkowski (1971) in the limit m/mp 4 1, E = 0(1) 
(see figure 6), in spite of their use of Maxwell molecules. To obtain this solution, these 
authors skipped the numerical instability discussed by Sirovich & Goldman (1969), 
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FIQURE 7. Function G(M, E )  [left-hand side of inequality (25)]. The hypersonic ttssumption remains 
valid even on the hot side of the wave provided G %- m/m,. 

by starting the integration at the downstream conditions of the inner shock of the 
light gas (intersection point of the outer solution with the axis E = 1 in figure 1).  
However, they did not consider the case where the inner shock is very weak, in which 
their expansion in powers of m/m, does not remain valid. 

5. Comparison with experiments 
The seminal experiments of Gmurczyk et al. (1979), revealing a rich variety of shock 

structures in He-Xe mixtures (double humps, two scales, etc.), motivated a new 
stream of papers on the subject, which has proceeded independently from the 
dusty-gas literature and the paper of Harris & Bienkowski. More recently, these 
authors (Tarczynski et al. 1986) have refined a slight inaccuracy in the downstream 
tail of their former shock-tube data, and have also presented new experiments on 
shocks in free jets. These later data will not be compared with our results here because, 
at the low Reynolds numbers prevailing at the nozzle, the upstream shock conditions 
are removed from equilibrium. 

Figure 8 contains a comparison between our phase-space results and the 1986 
shock-tube experiments corresponding to the smallest heavy-gas molar fraction (3 % 
Xe or B = 1.015): one for a weak shock (M = 1.09) in which the solution of 93.3 may 
be applied, and another one for a strong shock (M = 3.09) for which the phase-space 
solution is given by the outer solution (16). The agreement is excellent in both cases. 
Riesco-Chueca et al. (1986) have compared real-space results from the present model 
against experiments by Gmurczyk et al. (1979), also with fairly good agreement in 
the location of the first hump and the shock width. This fact provides strong support 
for our governing equations which connect phase-space and real-space structures 
unequivocally once the light-gas viscosity is specified. 

It is a pleasure to thank Dr Antonio Barrero (Sevilla), Dr Antonio VBzquez (MIT), 
Pascual Riesco-Chueca (Yale) and Drs Herczinski and Walenta (Warsaw) for their 
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